

Pixelated CdTe Detectors to Overcome Intrinsic Limitations of Crystal Based Positron Emission Mammographs

Gianluca De Lorenzo

Voxel Imaging PET (VIP) Pathfinder Project Institut de Fisica d'Altes Energies Universitat Autonoma de Barcelona

- State-of-the-art Positron Emission Mammography
- The VIP Novel Design
- Assessment of Expected Performance
- Discussion and Future Work

Overview of PEM Technique

courtesy of W. Moses, NIM Phys.A Volume 525, Issues 1-2, 1 June 2004, Pages 249-252

Yamada et al.

- Restricted FOV for higher cancer detection performance.
- Several designs based on scintillators proposed or developed.

Increasing interest in PEM guided biopsy with coplanar devices.

Intrinsic Limitations of Crystal PEM

- Drawbacks of scintillating crystals:
 - poor energy resolution (6%-10%)
 - poor DOI resolution (≥6mm)
 - not compatible with MR if coupled to PMTs
- Lack of DOI information is most stringent limitation:
 - poor CROSS-plane resolution
 - reduce ability of detecting small lesions

courtesy of W. Lou, IEEE trans. of nucl. sci., vol.. 57, Nno 1, February 2010

+ The VIP Novel Design

The VIP module

- 4 CdTe detectors (1cm x 2cm) mounted on ultra-thin layer (< 150 um of passive material).
- 200 pixels per detector with 1mm x 1mm x 2mm size.
- ~1.5% energy resolution at room temperature.
- Independent signal processing and readout per channel (1 mm² smart-pixel microchip).
- Stack modules to obtain any detector shape.
- Incoming photons facing 4cm CdTe.

The VIP Project

- The Voxel Imaging PET (VIP) Pathfinder project aims to prove the feasibility of using pixelated CdTe detectors in PET.
- VIP design offers:
 - high signal purity
 - superior spatial resolution
 - compatible with strong magnetic field
 - great flexibility for variety of applications

Compton camera

+ VIP Module in Coplanar PEM

- Substitute crystals with VIPmodule in typical dual head coplanar geometry.
- Stacked modules offer adequate stopping power with negligible passive material.
- Optimal application for VIP design due to limited size:
 - cost contained
 - limited number of channels

8

Simulation of VIP-PEM

System Specifics (see G.Ariño's poster n. 35)

Voxel Size	1mm x 1mm x 2mm
Num of Channels	256000
Meas. Time per Channel	10 us
Dead Time per Channel	20 us
Coincidence Time Window	20 ns
Energy Resolution	1.57 %
Trigger Threshold	20 KeV

- VIP-PEM simulated with GAMOS (Geant4 based framework)
- List-mode event selection with offline coincidence search.
- Images reconstructed with different algorithms for comparison:
 - FBP
 - OSEM
 - OE (see M. Kolstein's poster n. 84)

+ VIP-PEM Counting Performance

- VIP-PEM sensitivity of ~2 cps/kBq compatible with analogous scanners.
- Virtually noise-free data due to narrow energy selection window.
- Can operate at high activity.

+ VIP-PEM Spatial Resolution

- Excellent spatial resolution along all directions.
- Expected a 2 times better IN-plane PSF with respect to analogous crystal PEMs.
- Expected 8 times better CROSS-plane PSF with respect to analogous crystal PEMs.

VIP-PEM Image Quality: IN-plane Derenzo Phantom

- Image of a typical Derenzo phantom.
- High-contrast/high-resolution down to smallest rods (Ø 1.2 mm).
- Image reconstructed with OE algorithm.

13

VIP-PEM Image Quality:

IN-plane Sections of NEMA Phantom

- Images of cylindrical NEMA NU4 2008 phantom for small PET evaluation.
- Excellent quality IN-plane sections.
- Images reconstructed with OSEM.

+ VIP-PEM Image Quality: CROSS-plane Sections of NEMA Phantom

Gianluca De Lorenzo, IFAE Barcelona

iWoRiD 2012

14

+ Discussion

- Simulation results indicate VIP modular design based on pixelated CdTe as excellent solution to overcome current limitations of crystal PEMs.
- VIP-PEM has the potential to provide unprecedented image quality and resolution in all directions.
- VIP-PEM optimal solution for:
 - <4mm tumor size detection.</p>
 - PEM guided biopsy.
 - MR-PEM hybrid systems.

VIP-PEM

- Ongoing effort of the VIP group on three fronts:
- 1. Development of the VIP smart-pixel for individual channel signal processing.
- 2. Development and testing of small dual-head prototype.
- 3. Optimization of image reconstruction algorithms.

➔ Project goal deadline: early 2015

STAY TUNED!

Backup Slides

╋

iWoRiD 2012

Gianluca De Lorenzo, IFAE Barcelona

17

Expectation-Maximization Algorithm

See M. Kolstein's poster "Modeling, Simulation, and Evaluation of Compton Camera Based on Pixelated Solid-State Detector"

+ DOI Impact on Tumor Detectability

W.W. Moses, J. Qi / Nuclear Instruments and Methods in Physics Research A 527 (2004) 76-82

Torso Phantom Scan preliminary results with low stat

Sphere-to-background activity ratio: 8:1